The 2015 ILCOR, AHA, and ERC advanced life support ACLS guidelines are now out. This will be a brief review of what I think are the most important or interesting changes in the guidelines based on my first read through them. (I noticed some minor differences between the AHA and ERC versions of these guidelines, but nothing worth spending much time on.)
If I had to take away just 2 learning points, they would be:
- These ACLS guidelines are very similar to the 2010 ACLS guidelines. There are no changes important enough to warrant paying for another ACLS course. If you know the 2010 ACLS guidelines, just keep providing good patient care.
- As always, the science is weak. Only 1% of recommendations were “level A”, meaning high quality evidence from more than one RCT. The most common phrase I encountered reading through these guidelines was “may be reasonable”. This phrase is essentially meaningless and can easily be translated into “may not be reasonable”. Tread with care.
That being said, let’s look at a few areas where they have made some changes to the guidelines.
CPR
The major points about CPR really haven’t changed. Keep going with good compressions at 30:2, maximizing compression time, with no pauses longer than 10 seconds. However, they have made some minor changes to their descriptions of good CPR:
- Not too fast. Maximum compression rate of 120. They don’t won’t compressions going too fast, as there is evidence that quality decreases with more than 120 compressions per minute. The new target is 100-120 compressions a minute (instead of at least 100)
- Not too deep. Maximum compression depth 6 cm. The new target is 5-6cm in adults (instead of at least 5cm)
- 10 breaths a minute. If an advanced airway (endotracheal tube, LMA, etc) is in place, everyone gets just 10 breaths a minute. This applies to children and infants as well
CAB is the alphabet. No change, just a statement of support. Start with compressions to reduce the delay to first compression.
Compression only CPR is not endorsed. If you are a trained provider, keep giving rescue breaths. They state, “Our confidence in the equivalence between chest compression-only and standard CPR is not sufficient to change current practice”
Medications
Vasopressin is OUT. A change that is unlikely to affect many providers. This change is not because vasopressin is in anyway worse than epinephrine, but because it has equivalent outcomes, so they only list epinephrine to simplify the algorithm. (I won’t get started here on the question of whether epinephrine actually provides any benefit.)
Give epinephrine early in non-shockable rhythms. Based on one observational study, they say if you are going to give epinephrine, you should probably get epinephrine on board as soon as possible in non-shockable rhythms. (For a full review of the evidence for epinephrine, see this post.)
The vasopressin, epinephrine, steroid combination is not recommended. They discuss the trials that look at this and rate them as very low quality evidence. They say, “we suggest against the routine use of steroids during CPR for OHCA (weak recommendation, very-low-quality evidence).”
The guidelines do recognize the “equipoise concerning the role of drugs in improving outcomes from cardiac arrest”. Personally, I think that the bulk of the evidence makes it pretty clear that medications are more likely to be harmful (by putting patients in the ICU only to die anyway) than they are to be helpful.
Naloxone added to the guidelines. In patients with known or suspected opioid addiction who are not breathing normally but have a pulse, it is reasonable for trained lay rescuers and BLS providers to administer naloxone. The doses listed are 2mg intranasally or 0.4mg IM. They suggest standard following the standard ALS algorithm if the patient does not have a pulse, but state that providing a dose of naloxone may be reasonable based on the possibility that the patient may be in respiratory distress.
Capnography
Waveform capnography receives a little more attention than in the past. They say:
- Waveform capnography is the most reliable method to confirm and continuously monitor tracheal tube placement
- An end-tidal less CO2 than 10 mmHg after 20 minutes is associated with extremely low chance of survival, but should not be used alone in the decision to stop resuscitation
- Waveform capnography can be used to monitor the ventilation rate
- Waveform capnography can be used to monitor the quality of CPR. (High quality compressions should produce an end-tidal CO2 of at least 12-15 mmHg).
- A rise in end-tidal CO2 can be used as an early indication of ROSC
Technology
Social media has a role in cardiac arrest. Or maybe it does. Specifically they state: “It may be reasonable for communities to incorporate social media technologies that summon rescuers who are in close proximity to a victim of suspected OHCA and are willing and able to perform CPR.”
Mechanical chest compressions are not recommended. Not routinely at least. “The evidence does not demonstrate a benefit with the use of mechanical piston devices for chest compressions versus manual chest compressions in patients with cardiac arrest.” They state that mechanical compression is a reasonable alternative if sustained high quality compressions are impractical or compromise provider safety.
Do not (routinely) use impedance threshold devices. No real surprise here. Although I know some people absolutely love these, the bulk of the evidence to date is completely unconvincing.
ECMO is in. They state that ECMO is a reasonable alternative to conventional CPR if the etiology is thought to be reversible.
Ultrasound:
- Added as an additional method for ETT confirmation. Probably not a big game changer for most with quantitative end tidal CO2
- Peri-arrest ultrasound may have a role for identifying reversible causes of arrest in addition to myocardial contractility, though it is unclear if it affects clinical outcomes
Post-resuscitation care
Oxygen
- They are looking for the Goldilocks zone: not too little, not too much. They specifically recommend against hypoxia and hyperoxia in the post-resuscitation period. Basically, follow your O2 sat
- During arrest, when the O2 sat is unreliable, they recommend using a 100% FiO2
Cardiac catheterization
- There is a greater emphasis on need for urgent coronary cath if the arrest was likely to be cardiac in nature
Temperature
- They recommend picking and maintaining a target temperature, based on low or very low quality evidence
- The target temperatures they now recommend are anything between 32 and 36 degrees Celsius
- The recommendation to prevent fever is based on “very-low-quality evidence”
- No prehospital cooling
Special circumstances
Pregnancy
- No more tilting the patient. It is no longer recommended to use a wedge or attempt to laterally tilt the patient because this will interfere with the quality of CPR. Just manually displace the uterus to the left. (Most people have been teaching this already)
- Perimortem C-section is still recommended after 4 minutes of CPR with no ROSC. However, if the mother will clearly not survive, such as in non-survivable trauma, they recommend starting the c-section immediately
Hypothermia
- ECLS for unstable hypothermia. Hypothermic patients without signs of cardiac instability can be rewarmed externally using minimally invasive techniques. Patients with signs of cardiac instability should be transferred directly to a centre capable of extracorporeal life support (ECLS).
Trauma
They have added a specific algorithm for the traumatic arrest. The immediate actions are addressing the key reversible causes: hypoxia, tension pneumothorax, tamponade, and hypovolemia.
Pediatrics
CPR should be 15:2 if multiple providers are available, but 30:2 if there is only a single provider.
Do not use compression only CPR. Stick with standard CPR (with rescue breaths) because of high the rate of asphyxia. However, if the rescuer is unwilling to provide rescue breaths, advise compression only CPR
When an advanced airway in place, give 10 breaths a minute (same as adults) no matter what the patient’s age.
Atropine
- No routine atropine for endotracheal intubation
- Dosing now strictly weight based (0.02mg/kg). No confusing minimum dose
Single cardioversion electricity dose. There used to be multiple different doses for cardioversion in SVT. It is now recommended just to use 1 joule/kg.
Neonatal Resuscitation
The NRP algorithm is actually the area with the biggest changes, as far as I can tell. I go into more detail on these changes in my neonatal resuscitation post.
The one big change people should know about is that the presence of meconium does not necessitate intubation unless tracheal obstruction is suspected. No matter what the fluid color is, they want us to start ventilation as soon as possible.
“Review of the evidence suggests that resuscitation should follow the same principles for infants with meconium-stained fluid as for those with clear fluid; that is, if poor muscle tone and inadequate breathing effort are present, the initial steps of resuscitation (warming and maintaining temperature, positioning the infant, clearing the airway of secretions if needed, drying, and stimulating the infant) should be completed under an overbed warmer.”
References and Resources
The full AHA ACLS guidelines are published in Circulation
The ERC guidelines are published in Resuscitation or can be accessed via http://www.cprguidelines.eu/
European Resuscitation Council: Summary of the main changes in the Resuscitation Guidelines
2015 AHA ACLS Guidelines: Highlights
Morgenstern, J. The 2015 ILCOR/AHA/ERC advanced life support guidelines (ACLS), First10EM, October 21, 2015. Available at:
https://doi.org/10.51684/FIRS.769
20 thoughts on “The 2015 ILCOR/AHA/ERC advanced life support guidelines (ACLS)”
I do not see where naloxone is recommended for known cardiac arrest in the guidelines.
Thanks for the comment Brian!
You are right, in that the actual guidelines in Circulation only mention the use of naloxone for respiratory distress. In that document, they state “We can make no recommendation regarding the modification of standard ALS in opioid-induced cardiac arrest.”
However, in the document “HIGHLIGHTS of the 2015 American Heart Association Guidelines Update for CPR and ECC” they say” Standard resuscitative measures should take priority over naloxone administration, with a focus on high-quality CPR (compressions plus ventilation). It may be reasonable to administer IM or IN naloxone based on the possibility that the patient is in respiratory arrest, not in cardiac arrest.” Because of this, I listed naloxone as an option in cardiac arrest, but I will change the above to make it more clear.
I had one other question. Where does the AHA say -the recognize the “equipoise concerning the role of drugs in improving outcomes from cardiac arrest” ?
I can find it in the ERC guidelines but not any AHA stuff. I am with you about the whole epinephrine for all in arrest being less than ideal and feel that ILCOR / AHA ignored large amounts of data when making this recommendation.
This post was a mix of the AHA and ERC guidelines to pick out what is clinically relevant. I don’t have much loyalty to one organization or another. I think you are right that it was just the ERC that made this statement, but it is hard to remember after sorting through the hundreds of pages of recommendations.
With regards to medication recommendations, I think the evidence of their futility/ harm stands for itself.
Thanks again for the comments.
Hi Justin. Can you explain what you mean by your assertion that the AHA has accepted money from the makers of amiodarone and this may have shaped the recommendations? I would argue that the conflict of interest process employed during the ILCOR evidence review and AHA guideline development process is the most robust of any guidelines process to date. I would refer you to the executive summary which lays this out.
Thanks Steve. I agree, the comment I originally made was a little off the cuff and poorly phrased. I deleted it.
However, I do have a big problem with the amount of industry money that is involved in so much of our research and guidelines. The AHA takes millions of dollars a year from pharmaceutical companies and I think it would be a mistake to overlook the impact that large sums of money have on decisions. That is not to say that any of the many incredible individuals involved in the development of these guidelines have done anything but fantastic work. I don’t think that this is an issue of individual conflicts of interest. Money, however, can have subtle effects. We know that even accepting gifts as small as pens can leave medical students feeling beholden to drug companies. I think there is ample evidence that the influence of money on medical guidelines and research in general is clearly detrimental.
Thanks, Justin! An excellent summary.
While it is correct that only 1% of the evidence used is considered strong. 48% of the Recommedations are considered at least Level IIa, being acceptable and probably helpful.
This is indicative of the extraordinary level to which the bar has been set when considering evidence for this consensus document. It is very hard to get a study to the point of being strong enough to yield high level evidence. That’s why we have to use so many studies to form the consensus! When I was on the National First Aid Science Advisory Board for Guidelines 2005 we reviewed more than 400 studies to achieve our document.
Don’t look for certainty in the Guidelines, you will never find it. This document is the consensus of the opinions of experts in the fields. Not a proclamation of facts.
Thanks for the comment. This document is indeed an amazing feat, and I will, for the most part, be following these guidelines. However, I think it is very important to emphasise the lack of evidence when teaching about these guidelines. It helps people understand why they change all the time and why they will see some practitioners deviating from the guidelines. Although these guidelines are a tremendous feat of work by a lot of very intelligent people, it would be a mistake to talk about them as if they were gospel.
I think we should encourage noninvasive echo trained personnel in acls team
Helpful! Thanks.
Hi Justin, reversible causes omit hypoglycaemia. Thoughts ?, Dave
An interesting question
I am not convinced hypoglycaemia causes cardiac arrest. I have seen very low sugars (measured as 0) and never seen cardiac manifestations, only neuro. Likewise, I have never seen a PEA patient get ROSC because of an amp of D50W.
I honestly haven’t looked too closely at the evidence, but there is at least one interesting blog post that covers this topic:
http://millhillavecommand.blogspot.ca/2012/03/using-dextrose-in-cardiac-arrest.html